Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 685
Filtrar
1.
Eur J Cancer Prev ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38568190

RESUMO

OBJECTIVE: Increasing evidence has shown that dietary behaviors are closely correlated with the carcinogenesis and progression of many types of cancer. However, few studies have assessed the global diet-related burden of cancer. This study aimed to estimate the pooled burdens and trends of five types of cancers attributable to dietary behaviors. METHODS: Data regarding cancer attributable to dietary behaviors were extracted from the Global Burden of Disease study 2019, including the death cases and age-standardized death rates, and disability-adjusted life years (DALYs) estimated according to diseases, age, sex, the socio-demographic index (SDI) and location. RESULTS: According to the Global Burden of Disease study 2019, five types of cancer were affected by dietary behaviors: colon and rectum cancer; tracheal, bronchus and lung cancer; stomach cancer; esophageal cancer and breast cancer. Unhealthy dietary behaviors for cancer caused a total of 605.4 thousand deaths and 13951.3 thousand DALYs globally. The burden of cancer attributable to dietary risks was higher for men than for women. The highest age-standardized death rates in 2019 were observed in southern Latin America, and the lowest rates were observed in North Africa and the Middle East. The greatest increases in the age-standardized death rates, from 1990 to 2019, were found in Western Sub-Saharan Africa, with the greatest decreases in Central Asia. The highest attributable proportions of death or DALYs were colon and rectum cancer. The greatest diet-related cancer burden was observed in regions with a high-middle SDI. CONCLUSION: Global age-standardized deaths and DALYs rates attributable to diet-related cancer are considerable and cause a substantial burden. Successful population-wide initiatives targeting unhealthy dietary behaviors would reduce this burden.

2.
J Virol ; : e0195723, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557247

RESUMO

Zoonotic coronaviruses pose a continuous threat to human health, with newly identified bat-borne viruses like swine acute diarrhea syndrome coronavirus (SADS-CoV) causing high mortality in piglets. In vitro studies indicate that SADS-CoV can infect cell lines from diverse species, including humans, highlighting its potential risk to human health. However, the lack of tools to study viral entry, along with the absence of vaccines or antiviral therapies, perpetuates this threat. To address this, we engineered an infectious molecular clone of Vesicular Stomatitis Virus (VSV), replacing its native glycoprotein (G) with SADS-CoV spike (S) and inserting a Venus reporter at the 3' leader region to generate a replication-competent rVSV-Venus-SADS S virus. Serial passages of rVSV-Venus-SADS S led to the identification of an 11-amino-acid truncation in the cytoplasmic tail of the S protein, which allowed more efficient viral propagation due to increased cell membrane anchoring of the S protein. The S protein was integrated into rVSV-Venus-SADS SΔ11 particles, susceptible to neutralization by sera from SADS-CoV S1 protein-immunized rabbits. Additionally, we found that TMPRSS2 promotes SADS-CoV spike-mediated cell entry. Furthermore, we assessed the serum-neutralizing ability of mice vaccinated with rVSV-Venus-SADS SΔ11 using a prime-boost immunization strategy, revealing effective neutralizing antibodies against SADS-CoV infection. In conclusion, we have developed a safe and practical tool for studying SADS-CoV entry and exploring the potential of a recombinant VSV-vectored SADS-CoV vaccine.IMPORTANCEZoonotic coronaviruses, like swine acute diarrhea syndrome coronavirus (SADS-CoV), pose a continual threat to human and animal health. To combat this, we engineered a safe and efficient tool by modifying the Vesicular Stomatitis Virus (VSV), creating a replication-competent rVSV-Venus-SADS S virus. Through serial passages, we optimized the virus for enhanced membrane anchoring, a key factor in viral propagation. This modified virus, rVSV-Venus-SADS SΔ11, proved susceptible to neutralization, opening avenues for potential vaccines. Additionally, our study revealed the role of TMPRSS2 in SADS-CoV entry. Mice vaccinated with rVSV-Venus-SADS SΔ11 developed potent neutralizing antibodies against SADS-CoV. In conclusion, our work presents a secure and practical tool for studying SADS-CoV entry and explores the promise of a recombinant VSV-vectored SADS-CoV vaccine.

3.
Cell Biochem Funct ; 42(3): e3991, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38532652

RESUMO

At present, atmospheric and room-temperature plasma (ARTP) is regarded as a new and powerful mutagenesis technology with the advantages of environment-friendliness, operation under mild conditions, and fast mutagenesis speed. Compared with traditional mutagenesis strategies, ARTP is used mainly to change the structure of microbial DNA, enzymes, and proteins through a series of physical, chemical, and electromagnetic effects with the organisms, leading to nucleotide breakage, conversion or inversion, causing various DNA damages, so as to screen out the microbial mutants with better biological characteristics. As a result, in recent years, ARTP mutagenesis and the combination of ARTP with traditional mutagenesis have been widely used in microbiology, showing great potential for application. In this review, the recent progress of ARTP mutagenesis in different application fields and bottlenecks of this technology are systematically summarized, with a view to providing a theoretical basis and technical support for better application. Finally, the outlook of ARTP mutagenesis is presented, and we identify the challenges in the field of microbial mutagenesis by ARTP.


Assuntos
Dano ao DNA , DNA , Temperatura , Mutagênese
4.
Int J Biol Macromol ; 266(Pt 1): 131257, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38554908

RESUMO

The infected wounds pose one of the major threats to human health today. To address this issue, it is necessary to develop innovative wound dressings with superior antibacterial activity and other properties. Due to its potent antibacterial, antioxidant, and immune-boosting properties, epigallocatechin gallate (EGCG) has been widely utilized. In this study, a multifunctional curdlan hydrogel loading EGCG (Cur-EGCGH3) was designed. Cur-EGCGH3 exhibited excellent physicochemical properties, good biocompatibility, hemostatic, antibacterial, and antioxidant activities. Also, ELISA data showed that Cur-EGCGH3 stimulated macrophages to secrete pro-inflammatory and pro-regenerative cytokines. Cell scratch results indicated that Cur-EGCGH3 promoted the migration of NIH3T3 and HUVECs. In vivo experiments confirmed that Cur-EGCGH3 could inhibit bacterial infection of the infected wounds, accelerate hemostasis, and promote epithelial regeneration and collagen deposition. These results demonstrated that Cur-EGCGH3 holds promise for promoting healing of the infected wounds.

5.
Langenbecks Arch Surg ; 409(1): 81, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38430305

RESUMO

PURPOSE: This study aims to compare the efficiency and clinical outcomes between the suctioning ureteral access sheath (UAS) group and the traditional UAS group during retrograde intrarenal surgery (RIRS) for kidney stones and explore the impact of suctioning UAS on postoperative infectious complications. METHODS: We retrospectively reviewed the clinical data of 162 patients with kidney stones who underwent RIRS with a traditional UAS (n = 74) or a suctioning UAS (n = 71) between March 2021 and May 2023. RESULTS: The mean operative time in suctioning UAS group (39.03 ± 18.01 s) was significantly shorter than that (49.73 ± 20.77 s) in the traditional UAS group (P = 0.037). The mean postoperative hospital stay was significantly shorter in the suctioning UAS group (1.57 ± 0.82d) compared with the traditional UAS group (2.30 ± 1.6 2 d) (P = 0.032). The instant SFRs were significantly higher in the suctioning UAS group (88.73%) than in the traditional UAS group (75.68%) (P = 0.040). The overall SFR in suctioning UAS group (92.96%) was slightly higher than the traditional UAS group (85.14%). The incidence of overall complications was significantly higher in the traditional UAS group (35.14%) than in the suctioning UAS group (16.90%) (P = 0.013). In multivariate analysis, female patients (OR 0.053, P = 0.018), positive urine WBC (OR 10.382, P = 0.034), operative time > 60 min (OR 20.231, P = 0.032), and the application of traditional UAS (OR 0.042, P = 0.017) were independent risk factors associated with infectious complications. CONCLUSION: We demonstrated that suctioning UAS provided a higher instant SFR and fewer postoperative infectious complications during RIRS, and patients with predictable risk factors for infectious complications could potentially benefit from the use of the suctioning UAS.


Assuntos
Cálculos Renais , Ureter , Humanos , Feminino , Estudos Retrospectivos , Cálculos Renais/cirurgia , Tempo de Internação , Análise Multivariada , Complicações Pós-Operatórias/epidemiologia
6.
Cell Rep ; 43(3): 113965, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38492217

RESUMO

G3BP1/2 are paralogous proteins that promote stress granule formation in response to cellular stresses, including viral infection. The nucleocapsid (N) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) inhibits stress granule assembly and interacts with G3BP1/2 via an ITFG motif, including residue F17, in the N protein. Prior studies examining the impact of the G3PB1-N interaction on SARS-CoV-2 replication have produced inconsistent findings, and the role of this interaction in pathogenesis is unknown. Here, we use structural and biochemical analyses to define the residues required for G3BP1-N interaction and structure-guided mutagenesis to selectively disrupt this interaction. We find that N-F17A mutation causes highly specific loss of interaction with G3BP1/2. SARS-CoV-2 N-F17A fails to inhibit stress granule assembly in cells, has decreased viral replication, and causes decreased pathology in vivo. Further mechanistic studies indicate that the N-F17-mediated G3BP1-N interaction promotes infection by limiting sequestration of viral genomic RNA (gRNA) into stress granules.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , DNA Helicases/metabolismo , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Virulência , RNA Guia de Sistemas CRISPR-Cas , Proteínas do Nucleocapsídeo , Replicação Viral , RNA Viral/genética
7.
Eur J Ophthalmol ; : 11206721241238878, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38454852

RESUMO

PURPOSE: To systematically analysis the burden and trends of blindness and vision loss for those aged ≥55 years from 1990 to 2019 and to predict trends over the next few years. METHODS: The data were extracted from the Global Burden of Disease Study (GBD) 2019. Trends from 1990 to 2019 were calculated using average annual percentage change (AAPC) by joinpoint regression analysis. Bayesian age-period-cohort (BAPC) models were used to predict future trends. RESULTS: In 2019, the global prevalence of blindness and vision loss was 471.1 million with 15.9 million disability-adjusted life-years (DALYs) for those aged ≥55 years. These numbers will reach 640.3 million cases and 18.9 million DALYs in 2030. The prevalence rate (per 100,000 population) increased from 32,137.8 (95% uncertainty interval [UI], 26,307.9-39,246.3) in 1990 to 33,509 (95% UI, 27,435.5-40,996.2) in 2019, with an AAPC of 0.143 (95% confidence interval [CI], 0.125-0.161; P < 0.001). The DALY rate (per 100,000 population) decreased from 632.9 (95% UI, 447.7-870.9) in 1990 to 579.3 (95% UI, 405.2-803.4) in 2019, with an AAPC of -0.293 (95% CI, -0.323-[-]0.263). Although the prevalence rates of cataracts, age-related macular degeneration, glaucoma, and near vision loss showed increasing trends from 1990 to 2019, the DALY rates indicated a downward trend for all blindness-causing diseases. The burden is heavier for women and in low Socio-demographic Index (SDI) regions. CONCLUSIONS: Despite a decline from 2001 to 2019, the burden of blindness and vision loss, measured by prevalence and DALYs, continues to rise after adjusting for population growth and aging. Blindness and vision loss are significant public health burdens, especially for women and in low-SDI regions.

8.
Med ; 5(4): 291-310.e5, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38417440

RESUMO

BACKGROUND: Immune checkpoint blockade has shown low response rates for advanced breast cancer, and combination strategies are needed. Microwave ablation (MWA) may be a trigger of antitumor immunity. This window-of-opportunity trial (ClinicalTrials.gov: NCT04805736) was conducted to determine the safety and feasibility of preoperative camrelizumab (an anti-PD-1 antibody) combined with MWA in the treatment of early-stage breast cancer. METHODS: Sixty participants were randomized to preoperatively receive single-dose camrelizumab alone (n = 20), MWA alone (n = 20), or camrelizumab+MWA (n = 20). A random number table was used to allocate interventions. The primary outcome was the safety and feasibility of MWA combined with camrelizumab. FINDINGS: Camrelizumab and MWA were well tolerated alone and in combination without delays in prescheduled surgery. No treatment-related grade III/IV adverse events were observed. Different from in the single-dose camrelizumab or MWA group, participants showed stable counts of blood cells after combination therapy. After combination therapy, peripheral CD8+ T cells showed enhanced cytotoxic and effect-memory functions. Clonal expansional CD8+ T cells showed higher cytotoxic activity and effector memory- and tumor-specific signatures than emergent clones after combination therapy. Enhanced interactions between clonal expansional CD8+ T cells and monocytes were observed, suggesting that monocytes contributed to the enhanced functions of clonal expansional CD8+ T cells. Major histocompatibility complex (MHC) class I-related pathways and interferon signaling pathways were activated in monocytes by combination therapy. CONCLUSIONS: Camrelizumab combined with MWA was feasible for early-stage breast cancer. Peripheral CD8+ T cells were activated after combination therapy, dependent on monocytes with activated MHC class I pathways. FUNDING: This study was supported by the Natural Science Foundation of Jiangsu Province (BK20230017).


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/induzido quimicamente , Linfócitos T CD8-Positivos/metabolismo , Micro-Ondas/uso terapêutico , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/efeitos adversos
9.
mBio ; 15(4): e0346823, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38411112

RESUMO

Powassan virus (POWV) is a tick-borne flavivirus known for causing fatal neuroinvasive diseases in humans. Recently, there has been a noticeable increase in POWV infections, emphasizing the urgency of understanding viral replication, pathogenesis, and developing interventions. Notably, there are no approved vaccines or therapeutics for POWV, and its classification as a biosafety level-3 (BSL-3) agent hampers research. To overcome these obstacles, we developed a replicon system, a self-replicating RNA lacking structural proteins, making it safe to operate in a BSL-2 environment. We constructed a POWV replicon carrying the Gaussia luciferase (Gluc) reporter gene and blasticidin (BSD) selectable marker. Continuous BSD selection led to obtain a stable POWV replicon-carrying Huh7 cell lines. We identified cell culture adaptive mutations G4079A, G4944T and G6256A, resulting in NS2AR195K, NS3G122G, and NS3V560M, enhancing RNA replication. We demonstrated the utility of the POWV replicon system for high-throughput screening (HTS) assay to identify promising antivirals against POWV replication. We further explored the applications of the POWV replicon system, generating single-round infectious particles (SRIPs) by transfecting Huh7-POWV replicon cells with plasmids encoding viral capsid (C), premembrane (prM), and envelope (E) proteins, and revealed the distinct antigenic profiles of POWV with ZIKV. In summary, the POWV replicon and SRIP systems represent crucial platforms for genetic and functional analysis of the POWV life cycle and facilitating the discovery of antiviral drugs.IMPORTANCEIn light of the recent surge in human infections caused by POWV, a biosafety level-3 (BSL-3) classified virus, there is a pressing need to understand the viral life cycle and the development of effective countermeasures. To address this, we have pioneered the establishment of a POWV RNA replicon system and a replicon-based POWV SRIP system. Importantly, these systems are operable in BSL-2 laboratories, enabling comprehensive investigations into the viral life cycle and facilitating antiviral screening. In summary, these useful tools are poised to advance our understanding of the POWV life cycle and expedite the development of antiviral interventions.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Infecção por Zika virus , Zika virus , Humanos , Vírus da Encefalite Transmitidos por Carrapatos/genética , Proteínas , Técnicas de Cultura de Células , Antivirais , RNA
10.
Int Urol Nephrol ; 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38372840

RESUMO

PURPOSE: Calcium-sensing receptor (CASR) influences the expression pattern of multiple genes in renal tubular epithelial cells. The objective of this inquiry was to explore the molecular mechanisms of CASR in renal tubular epithelial cells and nephrolithiasis. METHODS: HK-2 cells were transfected with lentiviruses carrying either CASR (named CASR) or an empty vector negative control (named NC), as well as shRNA intended to target CASR (named shCASR) or its corresponding negative control (named shNC). CCK-8 assay was used to detect the effect of CASR on the proliferation of HK-2 cells. RNA-Sequencing was applied to explore potential pathways regulated by CASR in HK-2 cells. RESULTS: PCR and western blot results showed that CASR expression was significantly increased in CASR cells and was decreased in shCASR cells when compared to their corresponding negative control, respectively. CCK-8 assay revealed that CASR inhibited the proliferation of HK-2 cells. RNA-Sequencing results suggested that the shCASR HK-2 cells exhibited a significant up-regulation of 345 genes and a down-regulation of 366 genes. These differentially expressed genes (DEGs) were related to cell apoptosis and cell development. In CASR HK-2 cells, 1103 DEGs primarily functioned in mitochondrial energy metabolism, and amino acid metabolism. With the Venn diagram, 4 DEGs (Clorf116, ENPP3, IL20RB, and CLDN2) were selected as the hub genes regulated by CASR. Enrichment analysis revealed that these hub genes were involved in cell-cell junction, and epithelial cell development. CONCLUSIONS: In summary, our investigation has the potential to offer novel perspectives on CASR regulating cell-cell junction in HK-2 cells.

11.
Enzyme Microb Technol ; 175: 110407, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38341913

RESUMO

Due to the extreme living conditions, extremophiles have unique characteristics in morphology, structure, physiology, biochemistry, molecular evolution mechanism and so on. Extremophiles have superior growth and synthesis capabilities under harsh conditions compared to conventional microorganisms, allowing for unsterilized fermentation processes and thus better performance in low-cost production. In recent years, due to the development and optimization of molecular biology, synthetic biology and fermentation technology, the identification and screening technology of extremophiles has been greatly improved. In this review, we summarize techniques for the identification and screening of extremophiles and review their applications in industrial biotechnology in recent years. In addition, the facts and perspectives gathered in this review suggest that next-generation industrial biotechnology (NGIBs) based on engineered extremophiles holds the promise of simplifying biofuturing processes, establishing open, non-sterilized continuous fermentation production systems, and utilizing low-cost substrates to make NGIBs attractive and cost-effective bioprocessing technologies for sustainable manufacturing.


Assuntos
Extremófilos , Extremófilos/genética , Biotecnologia/métodos , Fermentação
12.
Heliyon ; 10(2): e24454, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38293535

RESUMO

"Oncometabolite" 2-hydroxyglutarate (2-HG) is an aberrant metabolite found in tumor cells, exerting a pivotal influence on tumor progression. Recent studies have unveiled its impact on the proliferation, activation, and differentiation of anti-tumor T cells. Moreover, 2-HG regulates the function of innate immune components, including macrophages, dendritic cells, natural killer cells, and the complement system. Elevated levels of 2-HG hinder α-KG-dependent dioxygenases (α-KGDDs), contributing to tumorigenesis by disrupting epigenetic regulation, genome integrity, hypoxia-inducible factors (HIF) signaling, and cellular metabolism. The chiral molecular structure of 2-HG produces two enantiomers: D-2-HG and L-2-HG, each with distinct origins and biological functions. Efforts to inhibit D-2-HG and leverage the potential of L-2-HG have demonstrated efficacy in cancer immunotherapy. This review delves into the metabolism, biological functions, and impacts on the tumor immune microenvironment (TIME) of 2-HG, providing a comprehensive exploration of the intricate relationship between 2-HG and antitumor immunity. Additionally, we examine the potential clinical applications of targeted therapy for 2-HG, highlighting recent breakthroughs as well as the existing challenges.

13.
PLoS One ; 19(1): e0294293, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38271385

RESUMO

In this paper, considering the combined effects of nonlinear oil film forces and cracks on the rotor-bearing system, the differential equations of motion with 4 degrees of freedom are established by Lagrangian method. Then, the Lundgren-Kutta method is used to solve them and the results of the model are compared with the experimental data. The study demonstrate that the cracked rotor-bearing system is relatively stable at subcritical speeds, mostly in the period-1 motion. But near 1/3 of the critical speed, there is an inner loop in its whirl orbit and a significant increase in the 2x frequency component. When the system speed rises to the region near 1/2 of the critical speed, though the bifurcation motion and a relatively high 2x frequency can be observed, there are no other reliable fault characteristics. The study proves that the rotor crack fault diagnosis method based on the whirl orbits is convincing for slant cracked rotors.


Assuntos
Dinâmica não Linear , Movimento (Física)
14.
Adv Sci (Weinh) ; 11(1): e2305142, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37983610

RESUMO

IGF2BP2 is a new identified N6-methyladenosine (m6A) reader and associated with poor prognosis in many tumors. However, its role and related mechanism in breast cancer, especially in triple-negative breast cancer (TNBC), remains unclear. In this study, it is found that IGF2BP2 is highly expressed in TNBC due to the lower methylation level in its promoter region. Functional and mechanical studies displayed that IGF2BP2 could promote TNBC proliferation and the G1/S phase transition of the cell cycle via directly regulating CDK6 in an m6A-dependent manner. Surprising, the regulation of protein levels of CDK6 by IGF2BP2 is related to the changes in translation rate during translation initiation, rather than mRNA stability. Moreover, EIF4A1 is found to be recruited by IGF2BP2 to promote the translation output of CDK6, providing new evidence for a regulatory role of IGF2BP2 between m6A methylation and translation. Downregulation of IGF2BP2 in TNBC cell could enhance the sensitivity to abemaciclib, a CDK4/6 inhibitor. To sum up, our study revealed IGF2BP2 could facilitate the translation output of CDK6 via recruiting EIF4A1 and also provided a potential therapeutic target for the diagnosis and treatment of TNBC, as well as a new strategy for broadening the drug indications for CDK4/6 inhibitors.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/genética , Ciclo Celular/genética , Regulação para Baixo , Estabilidade de RNA , Proteínas de Ligação a RNA/genética , Quinase 6 Dependente de Ciclina/genética
15.
BMC Vet Res ; 19(1): 255, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38053138

RESUMO

BACKGROUND: Multidrug resistance in Enterobacteriaceae including resistance to quinolones is rising worldwide. The development of resistance may lead to the emergence of new transmission mechanisms. In this study, the collection of different E. coli was performed from animals and subjected to subsequent procedures including pulsed-field gel electrophoresis, micro-broth dilution method, polymerase chain reaction. Whole genome sequencing of E. coli C3 was performed to detect the affinity, antimicrobial resistance and major carriers of the isolates. RESULTS: A total of 66 E. coli were isolated and their antibiotic resistance genes, frequency of horizontal transfer and genetic environment of E. coli C3 were determined. The results showed there were both different and same types in PFGE typing, indicating clonal transmission of E. coli among different animals. The detection of antimicrobial resistance and major antibiotic resistance genes and the plasmid transfer results showed that strains from different sources had high levels of resistance to commonly used clinical antibiotics and could be spread horizontally. Whole-genome sequencing discovered a novel ICE mobile element. CONCLUSION: In summary, the antimicrobial resistance of E. coli in northeast China is a serious issue and there is a risk of antimicrobial resistance transmission. Meanwhile, a novel ICE mobile element appeared in the process of antimicrobial resistance formation.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Animais , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Infecções por Escherichia coli/veterinária , Enterobacteriaceae , China , Testes de Sensibilidade Microbiana/veterinária , Plasmídeos , Eletroforese em Gel de Campo Pulsado/veterinária , beta-Lactamases/genética
16.
Front Oncol ; 13: 1049147, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38053661

RESUMO

Aim: There is accumulating evidence indicating that ASS1 is closely related to tumors. No pan-cancer analysis of ASS1 was available. Methods: Here we explored the gene expression and survival analysis of ASS1 across thirty-three tumors based on the datasets of the TCGA (Cancer Genome Atlas), the GEO (Gene Expression Omnibus), and the GEPIA2 (Gene Expression Profiling Interactive Analysis, version 2). Results: ASS1 is highly expressed in most normal tissues and is related to the progression of some tumors. We also report ASS1 genetic alteration and their association with tumor prognosis and report differences in ASS1 phosphorylation sites between tumors and control normal tissues. ASS1 expression was associated with the infiltration of cancer-associated fibroblasts (CAFs) for the TCGA tumors of BRCA (Breast invasive carcinoma), CESC (Cervical squamous cell carcinoma and endocervical adenocarcinoma), COAD (Colon adenocarcinoma), ESCA (Esophageal carcinoma), SKCM (Skin cutaneous melanoma), SKCM-Metastasis, TGCT (Testicular germ cell tumors), and endothelial cell for the tumors of BRCA, BRCA-Basal, CESC, ESCA, KIRC (Kidney renal clear cell carcinoma), LUAD (Lung adenocarcinoma), LUSC (Lung squamous cell carcinoma), SKCM, SKCM-Metastasis, SKCM-Primary, STAD (Stomach adenocarcinoma), and TGCT. The KEGG and GO analysis were used to analyze ASS1-related signaling pathways. Finally, we used Huh7 cell line to verify the function of ASS1 in vitro. After ASS1 knockdown using small interfering RNA (siRNA), the proliferation and invasion of Huh7 were enhanced, cyclin D1 was up-regulated, and anti-apoptotic protein bax was down-regulated, suggesting that ASS1 is a tumor suppressor gene in hepatocellular carcinoma. Conclusion: Our first pan-cancer study offers a relatively comprehensive understanding of the roles of ASS1 in different tumors.

17.
J Exp Bot ; 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38079376

RESUMO

Cold stress is a serious threat to global crop production and food security. Plant resistance to cold stress is accompanied by growth deficit and yield reduction. In the present study, we discovered the novel gene BcGSTF10 which is implicated in cold stress resistance. Biochemical and genetic analyses demonstrated that BcGSTF10 interacts with BcICE1 to induce C-repeat binding factor (CBF) genes that enhance freezing stress tolerance in non-heading Chinese cabbage [NHCC; Brassica campestris (syn. Brassica rapa) ssp. chinensis] and in Arabidopsis thaliana. However, BcCBF2 represses BcGSTF10 and the latter promotes growth in NHCC and Arabidopsis. This dual function of BcGSTF10 indicates its pivotal role in balancing cold stress and growth, which will inform the development of strategies to breed climate-resilient and high-yield crops.

18.
Plants (Basel) ; 12(24)2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38140475

RESUMO

Based on the established efficient regeneration system for watercress in our laboratory, we optimized the processes of pretreatment, co-culture, and differentiation culture. Through GFP fluorescence and PCR identification, we successfully obtained transgenic watercress with the DR5 gene, which allowed us to investigate the distribution details of auxin in the growth process of watercress. Our findings provide an effective method for gene function research and lay the foundation for innovative utilization of germplasm resources of watercress.

19.
Microbiol Spectr ; 11(6): e0267623, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37943512

RESUMO

IMPORTANCE: Spike-receptor interaction is a critical determinant for the host range of coronaviruses. In this study, we investigated the SARS-CoV-2 WHU01 strain and five WHO-designated SARS-CoV-2 variants of concern (VOCs), including Alpha, Beta, Gamma, Delta, and the early Omicron variant, for their Spike interactions with ACE2 proteins of 18 animal species. First, the receptor-binding domains (RBDs) of Alpha, Beta, Gamma, and Omicron were found to display progressive gain of affinity to mouse ACE2. More interestingly, these RBDs were also found with progressive loss of affinities to multiple ACE2 orthologs. The Omicron RBD showed decreased or complete loss of affinity to eight tested animal ACE2 orthologs, including that of some livestock animals (horse, donkey, and pig), pet animals (dog and cat), and wild animals (pangolin, American pika, and Rhinolophus sinicus bat). These findings shed light on potential host range shift of SARS-CoV-2 VOCs, especially that of the Omicron variant.


Assuntos
COVID-19 , Doenças do Gato , Quirópteros , Doenças do Cão , Animais , Gatos , Cães , Cavalos , Camundongos , Suínos , Enzima de Conversão de Angiotensina 2/genética , SARS-CoV-2/genética , Animais Selvagens , Ligação Proteica , Mutação
20.
Front Oncol ; 13: 1284926, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37916166

RESUMO

The significance of matrix stiffness in cancer development has been investigated in recent years. The gradual elastic force the extracellular matrix imparts to cells, known as matrix stiffness, is one of the most important types of mechanical stimulation. Increased matrix stiffness alters the biological activity of cells, which promotes the growth of numerous malignancies, including breast cancer. Comprehensive studies have demonstrated that increasing matrix stiffness activates molecular signaling pathways that are closely linked to breast cancer progression. There are many articles exploring the relationship between mechanism hardness and breast cancer, so we wanted to provide a systematic summary of recent research advances. In this review, we briefly introduce the mechanism of matrix stiffness in breast cancer, elaborate on the effect of extracellular matrix stiffness on breast cancer biological behavior and signaling pathways, and finally, we will talk about breast cancer treatment that focuses on matrix stiffness.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...